If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-k^2+13k-42=0
We add all the numbers together, and all the variables
-1k^2+13k-42=0
a = -1; b = 13; c = -42;
Δ = b2-4ac
Δ = 132-4·(-1)·(-42)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*-1}=\frac{-14}{-2} =+7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*-1}=\frac{-12}{-2} =+6 $
| y2-10y+21=0 | | 5x+18+2x-7=32 | | (x)(x+1)(x+2)=774 | | 5+3y=92 | | 5x+3=92 | | 2x/20=20/40 | | 2=3r−1 | | 32-7=-6(x+3) | | x+5x−9=910 | | -5(x-5)=75 | | 2a2-3a=5 | | d^2–6d=0 | | 5p+35=180 | | .5(4a-15)+3=99.5 | | 6.m-14=3.m+46-m | | 3w=10w-63 | | 2p-97=p-27 | | 5x+6=6x+6 | | 8=3s-75 | | 17z+11=4z+24 | | 2/3y+3y-1=219 | | 9v=14v-25 | | 10u+10=7u+37 | | 3x+15=1/3x+4 | | 5y+5=25y= | | 3z-7=7z-47 | | 3.k-4=14+2.k | | -5(x-1)=-35 | | u+18=2u+8 | | 3k-4=14+2.k | | -5(-1y+-8)=35 | | 20w+1=6w+15 |